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Settling of a stamp is studied for a particular case of an orthotropic body,
Certain supplementary conditions for the existence of a solution are elucidated,
Settling of a stamp is computed for concrete anisotropic bodies, and the in-
fluence of rotation of the stamp axes taken into account,

1. Derivation of basic formulas., The stress-strain siate of an ortho -
tropic half-space acted upon by a flat stamp elliptic in the plane,is defined by the
load function

¥ (Q) = P (8n2 Vab)1n (R — Vab)(Qy + Vab)1] (1.1
Q, = (£ + vp2)A™1, A = (a%a? 1 b2B?) (ad)~1
E=ar+ Py, oa=cosO, P==sin0

Here P denotes the compressive force applied to the stamp at the center of the
ellipse, 2 and b are the ellipse semiaxes and vy are the roots of the character-
istic equation (1,2) of [1]., We assume that the axes of the ellipse coincide with the
elastic symmetry axes of the medium, i, e, the boundary plane z= 0 coincides
with one of the elastic symmetry planes of the body .

The function (1, 1) corresponds to the following stress distribution under the stamp:

oz {z, ¥, 0) = P (2nab)™2(4 — 22/ a® — y* / p2)~'h (1.2)

and outside the stamp we have o, (z, y, 0) = 0.
The elastic displacements of the points of the medium under the stamp, orthogonal
to the boundary , are all equal and given by the formula

3
w(z,y,0)=P(2n) ab)! < D) Reia®PA, (AOA)’1> (L.3)
k=1

The values of Akm » Ap, Ao are shown in [1]. Here and henceforth the angular
brackets will denote integrationin 8 from 0 to 2m. The formula (1, 3) defines
the settling of the stamp; the settling depends essentially on the material of the medium,

In what follows, we shall restrict ourselves to considering a particular form of an
orthotropic body in which the elastic constants satisfy the conditions

B=A4A, M=L, G=F
In this case we have [2]

w(z, y, 0) = P (2n V ab)~1(Re iA;* (A*A)~1) (1.4)
A* = —(L + F)(CL)™D (v; + vy)(vs + va)(vs + V)
Ag* = —(L 4 F)(CL)=D A,**
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Ag** = (AC — F}C1 — 2K 0382 + (LF)! {N (AC — F?) 4
Ko [(A + H)C — 2Pa2pd) FyDC) " om

D = (LF)"[AN + K, (4 + H)a3p?]

Ko=A—2N —H, m=17Im® + vyt vy

HC—F2>0, A>H

(misprints in the expressions A;* and A,* made in[2] have been eliminated ).
The characteristic equation (1, 2) of [1] can be written conveniently in the form

V84 AVt AV 4= 0 (1.5)
Ay = (CL)'=[AC + L* — (L + F)* + CN]
A= CLYTI{AL+ N[ACH L2 — (L+ FPl + [C(4 4 H) —

2 (L 4 F)*)Kq2p%), Aq= FC-1D

When the inequalities shown above hold, the quantities A; are positive for all
6 € (0,2x) , and this implies that Eq, (1,5) has no real roots, This agrees with the
requirement that the system of elastic equilibrium equations be fully elliptic.

From (1,4) it is clear that w (z, ¥, 0) is a symmetric function of any three dif-
ferent roots of (1,5). We can assume without loss of generality that their imaginary
parts my (k= 1, 2, 3) are positive, i,e, m=m;+ mg-+ my >0 forall 0 in
the interval shown above,

From (1,.5) we can derive the following algebraic equation for m ;

f(m)=(m*— 4, — 8 VAem— 44, =0 (1.6)
On the other hand we have
V1 + Vo) (Vs + Vg)(vs + V) = —1sif' (m)
hence we can write (1.4 ) in the form

(1.7)
w (z, ¥y, 0) = P (165 Vab)~1 ¢f’ (m)(A,**A)~1y

Since the quantity w must be positive and Ay** (m) > 0 for all 0, the prob-
lem of existence and uniqueness of a solution of the problem in question depends, in
particular, on the following conditions being fulfilled: (a) positive roots of (1, 6) exist;
(b) a unique positive root m of this equation exists for which # (m) > 0.

Let us investigate the roots of Eq, (1,6), The following cases are possible at vari-
ous values of 0 from the interval (0, 2x)

A — 44, <0, A2 —44,>0

We have f(+ ) >0, f(V 4, < 0. Inthe first case f(0)< 0, and in the
second case f(0) > 0. Since j' (m) has a single positive root lying to the right of
the point ¥4, andthe points V1;4, are points of inflection, it follows that
in the first case we have only a single positive root of (1, 6), while in the second case
we have two roots, In the latter case ;' (m) > 0 only for the larger of those two
roots , therefore the conditions given above hold for both cases,

Differentiating the identity (1, 6) with respect to 6 we obtain
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my = KoTy [f (m)]~} sin 40
To = (2LC VA ™{(A+ H) m + VAL1{C(A + i) — 2 (L - )*])

Since [ (m)==0, m attains an extremum when 6 =rkn/4 (k= 1, 2,...).
If To>0 (the condition which holds for all real media referred to in [3], then the
sign of the second derivative of m with respect to € is determined by the sign of
the expression Kocos40. If Ko> 0 (Ko< 0) , then m attains a minimum
(maximum)at =0, n/2 and a maximum (minimum) at =n/4 (weonly
need to consider the first quarter).

When 0 =0,xn/2 theroots v, of (1,5) are obtained in the following explicit

form: @ = @LOYIAC — F (F + 20)] FV[AC = (F T 3LPIAC = )
vyt = —NL7

The same result is obtained by setting formally in(1,5) K, =0, i,e, by in-
troducing a "model" transversely isotropic medium for the material in question, For

Table 1 this medium the quantity m will be
constant and described , in the polar m,
=10 15 30 ® g coordinates, by a circle the radius of

which is m when 6 =0, n/2. If
K, > 0 for the given material, then
the curve representing the dependence

3.49059 | 3.49059 | 3.49059 | 3.49059
3.01441 | 3.00200 | 2.97596 | 2.96226
3.41205 | 3.39110 | 3.34655 | 3,32274 .
5 30715 | 5.30930 | 3.4s586 | 3.ga5 ©°f ™ on 0 will be found outside
3.43527 | 3.47047 | 3.53457 | 3.56404 (this circle, and inside when Ko < 0.
3.20477 | 3.21953 | 3.24774 | 3.26124 The first medium is represented by
3.25234 | 3.27046 | 3.30473 | 3.32102  e.g. sylvite, fluorspar, rock salt and
cubic pyrites, while topaz and bary -
tes can serve (after some averaging of
the elastic constants) as examples of media for which K, < 0.
For a transversely isotropic body (K, = 0) Ag** (my) and § (my) are all
constant , and the settling of a plane stamp of elliptical crossection is determined by
the formula

=3 S UU R WD

w(z, y, 0) = P (165 ¥ ab)™f" (mo)Ao** (m,) <A™

where the elliptic integral can be found from tables, In the case of a circular stamp
the result can be obtained in terms of the elementary functions.

If Ko 0, the largest root of (1, 6) can be found for any value of @ using the
method of consecutive approximations and the equation

m? = Ay 4+ 2V As + 2 Vdgm

which yield an increasing bounded sequence converging to m . For an isotropic me-
dium we have A, = A4, =3, 44 =1, m = 3.

Table 1 gives m for certain values of © for beryl (1), topaz (2),barytes (3),
cubic pyrites (4), fluorspar (5 ), rock salt (6) and sylvite (7), The data for topaz and
barytes were obtained after averaging their elastic constants (neither material belongs
to the class in question [3] ). The following values were accepted
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for topaz A-= 3215, € = 3000, H = 1280, F = 880, L = 1225, N = 1330;
for barytes A = 854, C = 1074, H = 468, F = 274. L = 208, N = 283.
The settling of the stamp was computed for the anisotropic media shown above,

using the formula b (64na- 10917 (0), = bla

T (e) = <f' (m) (A**A)D,  A° =(a? + &)™

The values of T (¢)-10° are given in Table 2 (where the media are numbered
as in Table 1),

It should be noted that for the model media introduced above corresponding values
of T (e) differ from those in Table 2 only in the fourth decimal place. It therefore
appears that in practice it is sufficient to carry out the basic computation of the sett-
ling of the stamp,

2, Settling of a plane elliptic stamp the axes of which are
inclined telative to the elastic symmetry axes of the material,
Let the major semiaxis of the loading ellipse be inclined to the z -axisat the angle y,.
Then the complex solutions of the elastic equilibrium equations can be constructed in
the form

3
uj(x,y,z)zkg Reu™(Q ) AD (j=1,2,3) (2.1)
=1

Qup = (& + vpd)A™l, & = za+ y,B

T =z C08Yo - ysinyy, y; = —z siny, -+ y cos vy,

where we introduce new notation for the elastic displacements of the points of the me-
dium,and in particular us (2, y, 2) = w (2, ¥, 3). The function u;* (Q,z) represents
the functions u; (z, y, 3) in the above sense, We have

£ = za; + yp, @3 =cos (84 vy, P, =sin (0} Yo)

which together with (2,1),imply that the settling of the stamp is determined in this
case by (1,7) where o« and B in the expressions for f (m) and A,** are replaced
by a; and f,. Itis evident that for an isotropic medium and a transversely iso -
tropic body the inclination of the axes of the stamp does not yield a new value for its
settling when the 2z -axis coincides with the elastic symmetry axis,

Table 2 Table 3

[ emm i | 1y LA /100 Y’=5| 15 30 4

1224| 1680 1919 [2498
861 | 1829 1352 | 1762
3195) 4387 5006 | 6520
838| 1149 1319 | 1712
1997 ) 2741 3128 | 4067
6321 | 8677 9800 | 12877
10545 | 14473 | 16516 | 21476

1680 1680| 1680| 1680
1185 1319| 1406| 1435
4386 | 4881} 5203} 5309
1156 | 1283|_1368| 1397
2740 3046 3247 3314
8673 | 9644( 1028010492
14469 | 16086 | 17148 | 17502

=10 W =
L =PI L SR JUR U
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We also see that the settling of the stamp is identical when Yo = 0, n /2. It can be
shown that the settling is extremal at the above values of Yo, as well as at Yo = nt/ 4,
Table 3 gives the values of 7,;-10% for certain values of Yo and e =1/,

(the media are numbered as in Table 1),
The results obtained indicate that maximum settling occurs for all media when
Yo =T 4.
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